Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37514612

RESUMO

On-site partial discharge (PD) measurements have turned out to be a very efficient technique for determining the insulation condition in high-voltage electrical grids (AIS, cable systems, GIS, HVDC converters, etc.); however, there is not any standardised procedure for determining the performances of PD measuring systems. In on-line and on-site PD measurements, high-frequency current transformers (HFCTs) are commonly used as sensors as they allow for monitoring over long distances in high-voltage installations. To ensure the required performances, a metrological qualification of the PD analysers by applying an evaluation procedure is necessary. A novel evaluation procedure was established to specify the quantities to be measured (electrical charge and PD repetition rate) and to describe the evaluation tests considering the measured influence parameters: noise, charge amplitude, pulse width and time interval between consecutive pulses. This procedure was applied to different types of PD analysers used for off-line measurements, sporadic on-line measurements and continuous PD monitoring. The procedure was validated in a round-robin test involving two metrological institutes (RISE from Sweden and FFII from Spain) and three universities (TUDelft from the Netherlands, TAU from Finland and UPM from Spain). With this round-robin test, the effectiveness of the proposed qualification procedure for discriminating between efficient and inappropriate PD analysers was demonstrated. Furthermore, it was shown that the PD charge quantity can be properly determined for on-line measurements and continuous monitoring by integrating the pulse signals acquired with HFCT sensors. In this case, these sensors must have a flat frequency spectrum in the range between several tens of kHz and at least two tens of MHz, where the frequency pulse content is more significant. The proposed qualification procedure can be useful for improving the future versions of the technical specification TS IEC 62478 and the standard IEC 60270.

2.
Sci Rep ; 9(1): 4726, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886229

RESUMO

High-current impulse experiments were performed on volcanic ash samples to determine the magnetic effects that may result from the occurrence of volcanic lightning during explosive eruptions. Pseudo-ash was manufactured through milling and sieving of eruptive deposits with different bulk compositions and mineral contents. By comparing pre- and post-experimental samples, it was found that the saturation (i.e., maximum possible) magnetization increased, and coercivity (i.e., ability to withstand demagnetization) decreased. The increase in saturation magnetization was greater for compositionally evolved samples compared to more primitive samples subjected to equivalent currents. Changes in remanent (i.e., residual) magnetization do not correlate with composition, and show wide variability. Variations in magnetic properties were generally more significant when samples were subjected to higher peak currents as higher currents affect a greater proportion of the subjected sample. The electrons introduced by the current impulse cause reduction and devolatilization of the ash grains, changing their structural, mineralogical, and magnetic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...